摘要:
针对长文本在文本分类时提取语义关键特征难度大,分类效果差等问题,建立基于循环神经网络变体和卷积神经网络(BGRU-CNN) 的混合模型,实现中文长文本的准确分类。首先,通过PV-DM模型将文本表示为句向量,并将其作为神经网络的输入;然后,建立BGRU-CNN模型,经双向门控循环单元(B-GRU)实现文本的序列信息表示,利用卷积神经网络(CNN)提取文本的关键特征,通过Softmax分类器实现文本的准确分类;最后,经SogouC和THUCNews中文语料集测试,文本分类准确率分别达到89.87%和94.65%。测试结果表明,循环层提取的文本序列特征通过卷积层得到了进一步优化,文本的分类性能得到了提高。
|